Bitcoin: Sistem Uang Elektronik Peer-to-Peer

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstrak. Versi uang elektronik peer-to-peer murni akan memungkinkan
pembayaran daring dikirim langsung dari satu pihak ke pihak lain tanpa melalui
lembaga keuangan. Tanda tangan digital menyediakan sebagian solusi, tetapi
manfaat utamanya hilang jika pihak ketiga tepercaya masih diperlukan untuk
mencegah pengeluaran ganda. Kami mengusulkan solusi untuk masalah
pengeluaran ganda menggunakan jaringan peer-to-peer. Jaringan memberi cap
waktu transaksi dengan melakukan hashing ke dalam rantai bukti kerja berbasis
hash yang berkelanjutan, membentuk catatan yang tidak dapat diubah tanpa
mengulang bukti kerja. Rantai terpanjang tidak hanya berfungsi sebagai bukti
urutan peristiwa yang disaksikan, tetapi juga bukti bahwa peristiwa tersebut
berasal dari kumpulan daya CPU terbesar. Selama sebagian besar daya CPU
dikendalikan oleh node yang tidak bekerja sama untuk menyerang jaringan,
mereka akan menghasilkan rantai terpanjang dan melampaui penyerang. Jaringan
itu sendiri membutuhkan struktur minimal. Pesan disiarkan berdasarkan upaya
terbaik, dan node dapat meninggalkan dan bergabung kembali dengan jaringan
sesuai keinginan, menerima rantai bukti kerja terpanjang sebagai bukti apa yang
terjadi saat mereka pergi.

1. Perkenalan

Perdagangan di Internet hampir sepenuhnya bergantung pada lembaga keuangan yang berperan
sebagai pihak ketiga terpercaya untuk memproses pembayaran elektronik. Meskipun sistem ini
bekerja cukup baik untuk sebagian besar transaksi, tetap saja ada kelemahan mendasar dari model
yang berbasis kepercayaan. Transaksi yang benar-benar tidak dapat dibalik (non-reversible) pada
dasarnya tidak mungkin dilakukan, karena lembaga keuangan tidak bisa menghindari untuk
menjadi mediator dalam sengketa. Biaya mediasi ini meningkatkan biaya transaksi, membatasi
ukuran transaksi minimum yang praktis, serta menutup kemungkinan terjadinya transaksi kecil
dan kasual. Lebih luas lagi, hilangnya kemampuan untuk melakukan pembayaran yang tidak dapat
dibalik pada layanan yang juga tidak dapat dibalik menjadi kerugian tersendiri. Dengan adanya
kemungkinan pembalikan, kebutuhan akan kepercayaan semakin meluas. Pedagang harus berhati-
hati terhadap pelanggan mereka, sering kali meminta lebih banyak informasi daripada yang
seharusnya dibutuhkan. Persentase tertentu dari penipuan diterima sebagai sesuatu yang tak
terhindarkan. Biaya dan ketidakpastian pembayaran ini bisa dihindari ketika bertransaksi secara
langsung menggunakan uang fisik, tetapi tidak ada mekanisme yang memungkinkan pembayaran
melalui saluran komunikasi tanpa pihak ketiga terpercaya. Yang dibutuhkan adalah sistem
pembayaran elektronik yang didasarkan pada bukti kriptografi, bukan kepercayaan, sehingga
memungkinkan dua pihak yang saling bersedia untuk bertransaksi secara langsung tanpa perlu
pihak ketiga terpercaya. Transaksi yang secara komputasi mustahil untuk dibalik akan melindungi
penjual dari penipuan, dan mekanisme escrow rutin dapat dengan mudah diterapkan untuk
melindungi pembeli. Dalam makalah ini, kami mengusulkan solusi untuk masalah double-
spending dengan menggunakan server timestamp terdistribusi peer-to-peer guna menghasilkan
bukti komputasi atas urutan kronologis transaksi. Sistem ini aman selama node jujur secara
kolektif menguasai lebih banyak kekuatan komputasi CPU dibandingkan kelompok penyerang

1

mailto:satoshin@gmx.com
http://www.bitcoin.org/

yang berkolaborasi.

2. Transaksi

Kami mendefinisikan koin elektronik sebagai rangkaian tanda tangan digital. Setiap pemilik
mentransfer koin ke pemilik berikutnya dengan menandatangani secara digital hash dari transaksi
sebelumnya dan kunci publik pemilik berikutnya, lalu menambahkannya di akhir koin. Penerima
pembayaran dapat memverifikasi tanda tangan untuk memverifikasi rangkaian kepemilikan.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key
Hash

Yeni, | o, | W
Owner O's N Owner 1's ~ Owner 2's
Signature v Signature v Signature
o <
9 =N
Owner 1's g Owner 2's g Owner 3's
Private Key Private Key Private Key

Masalahnya tentu saja penerima pembayaran tidak dapat memverifikasi bahwa salah satu
pemilik tidak melakukan pengeluaran ganda pada koin tersebut. Solusi umum adalah
memperkenalkan otoritas pusat tepercaya, atau percetakan uang, yang memeriksa setiap transaksi
untuk pengeluaran ganda. Setelah setiap transaksi, koin harus dikembalikan ke percetakan uang
untuk menerbitkan koin baru, dan hanya koin yang diterbitkan langsung dari percetakan uang yang
dipercaya tidak akan melakukan pengeluaran ganda. Masalah dengan solusi ini adalah bahwa
nasib seluruh sistem keuangan bergantung pada perusahaan yang menjalankan percetakan uang,
dengan setiap transaksi harus melalui mereka, seperti halnya bank.

Kita memerlukan cara bagi penerima pembayaran untuk mengetahui bahwa pemilik
sebelumnya tidak menandatangani transaksi sebelumnya. Untuk tujuan kita, transaksi paling awal
adalah yang dihitung, jadi Kkita tidak peduli dengan upaya pengeluaran ganda selanjutnya. Satu-
satunya cara untuk memastikan tidak adanya transaksi adalah dengan mengetahui semua transaksi.
Dalam model berbasis percetakan uang, percetakan uang mengetahui semua transaksi dan
memutuskan mana yang datang lebih dulu. Untuk mencapai hal ini tanpa pihak tepercaya,
transaksi harus diumumkan secara publik [1], dan kita memerlukan sistem yang memungkinkan
peserta menyepakati satu riwayat urutan penerimaan transaksi. Penerima pembayaran memerlukan
bukti bahwa pada saat setiap transaksi, mayoritas node sepakat bahwa transaksi tersebut
merupakan transaksi pertama yang diterima.

3. Server Stempel Waktu

Solusi yang kami usulkan dimulai dengan server stempel waktu. Server stempel waktu bekerja
dengan mengambil hash dari blok item yang akan diberi stempel waktu dan mempublikasikan
hash tersebut secara luas, misalnya di surat kabar atau postingan Usenet [2-5]. Stempel waktu
tersebut membuktikan bahwa data tersebut pasti sudah ada pada saat itu, tentu saja, agar dapat
masuk ke dalam hash. Setiap stempel waktu menyertakan stempel waktu sebelumnya dalam hash-
nya, membentuk rantai, dengan setiap stempel waktu tambahan memperkuat stempel waktu
sebelumnya.

Hash Hash

Block Block

Lem | [rem | | .. | Lem | [tem || .. |

4. BuktiKerja

Untuk mengimplementasikan server stempel waktu terdistribusi berbasis peer-to-peer, kita perlu
menggunakan sistem proof-of-work yang mirip dengan Hashcash milik Adam Back [6], alih-alih
postingan koran atau Usenet. Proof-of-work melibatkan pemindaian nilai yang ketika di-hash,
seperti dengan SHA-256, hash-nya dimulai dengan sejumlah bit nol. Rata-rata pekerjaan yang
diperlukan bersifat eksponensial dalam jumlah bit nol yang diperlukan dan dapat diverifikasi
dengan mengeksekusi satu hash.

Untuk jaringan stempel waktu Kita, kita mengimplementasikan proof-of-work dengan menambah
satu nonce dalam blok hingga ditemukan nilai yang memberikan hash blok sejumlah bit nol yang
diperlukan. Setelah upaya CPU dikeluarkan untuk membuatnya memenuhi proof-of-work, blok
tersebut tidak dapat diubah tanpa mengulang pekerjaan tersebut. Karena blok-blok selanjutnya
dirangkai setelahnya, pekerjaan untuk mengubah blok tersebut akan mencakup mengulang semua
blok setelahnya.

Block Block
*{ Prev Hash ‘ ‘ Nonce ‘ >} Prev Hash ‘ ‘ Nonce ‘
BRI RN

Bukti kerja juga memecahkan masalah penentuan representasi dalam pengambilan keputusan
mayoritas. Jika mayoritas didasarkan pada satu alamat IP satu suara, hal itu dapat dibantah oleh
siapa pun yang mampu mengalokasikan banyak IP. Bukti kerja pada dasarnya adalah satu CPU
satu suara. Keputusan mayoritas diwakili oleh rantai terpanjang, yang memiliki upaya bukti kerja
terbesar yang diinvestasikan di dalamnya. Jika mayoritas daya CPU dikendalikan oleh node yang
jujur, rantai yang jujur akan tumbuh paling cepat dan melampaui rantai pesaing mana pun. Untuk
memodifikasi blok sebelumnya, penyerang harus mengulang bukti kerja blok dan semua blok
setelahnya, lalu mengejar dan melampaui kinerja node yang jujur. Kami akan menunjukkan nanti
bahwa probabilitas penyerang yang lebih lambat untuk mengejar berkurang secara eksponensial
seiring dengan penambahan blok berikutnya.

Untuk mengimbangi peningkatan kecepatan perangkat keras dan minat yang bervariasi dalam
menjalankan node dari waktu ke waktu, tingkat kesulitan bukti kerja ditentukan oleh rata-rata
bergerak yang menargetkan jumlah rata-rata blok per jam. Jika dihasilkan terlalu cepat, tingkat
kesulitannya meningkat.

5. Jaringan

Langkah-langkah untuk menjalankan jaringan adalah sebagai berikut:

1) Transaksi baru disiarkan ke semua node.

2) Setiap node mengumpulkan transaksi baru ke dalam satu blok.

3) Setiap node bekerja untuk menemukan bukti kerja yang sulit bagi bloknya.

4) Ketika sebuah node menemukan bukti kerja, ia menyiarkan blok tersebut ke semua
node.

5) Node menerima blok hanya jika semua transaksi di dalamnya valid dan belum
dibelanjakan.

6) Node menyatakan penerimaannya terhadap blok tersebut dengan berupaya
menciptakan blok berikutnya dalam rantai, menggunakan hash dari blok yang
diterima sebagai hash sebelumnya.

Node selalu menganggap rantai terpanjang sebagai rantai yang benar dan akan terus

4

memperpanjangnya. Jika dua node menyiarkan versi berbeda dari blok berikutnya secara
bersamaan, beberapa node mungkin menerima salah satunya terlebih dahulu. Dalam hal ini,
mereka mengerjakan blok pertama yang mereka terima, tetapi menyimpan cabang lainnya untuk
berjaga-jaga jika cabang tersebut menjadi lebih panjang. Ikatan akan terputus ketika proof-of-work
berikutnya ditemukan dan satu cabang menjadi lebih panjang; node yang bekerja di cabang
lainnya kemudian akan beralih ke cabang yang lebih panjang.

Siaran transaksi baru tidak harus menjangkau semua node. Selama mencapai banyak node,
transaksi tersebut akan segera masuk ke dalam blok. Siaran blok juga toleran terhadap pesan yang
terputus. Jika sebuah node tidak menerima blok, node tersebut akan memintanya ketika menerima
blok berikutnya dan menyadari bahwa ia melewatkan satu blok.

6. Insentif

Berdasarkan konvensi, transaksi pertama dalam sebuah blok adalah transaksi khusus yang
memulai koin baru milik pembuat blok tersebut. Hal ini menambah insentif bagi node untuk
mendukung jaringan, dan menyediakan cara untuk mendistribusikan koin ke dalam sirkulasi,
karena tidak ada otoritas pusat yang menerbitkannya. Penambahan koin baru secara bertahap dan
konstan ini analog dengan penambang emas yang menghabiskan sumber daya untuk
menambahkan emas ke dalam sirkulasi. Dalam kasus kami, yang dikeluarkan adalah waktu CPU
dan listrik.

Insentif ini juga dapat didanai dengan biaya transaksi. Jika nilai keluaran suatu transaksi lebih
kecil dari nilai masukannya, selisihnya adalah biaya transaksi yang ditambahkan ke nilai insentif
blok yang berisi transaksi tersebut. Setelah sejumlah koin yang telah ditentukan memasuki
sirkulasi, insentif dapat sepenuhnya beralih ke biaya transaksi dan sepenuhnya bebas inflasi.

Insentif ini dapat membantu mendorong node untuk tetap jujur. Jika seorang penyerang yang
rakus mampu mengumpulkan daya CPU lebih besar daripada semua node yang jujur, ia harus
memilih antara menggunakannya untuk menipu orang dengan mencuri kembali pembayarannya,
atau menggunakannya untuk menghasilkan koin baru. Dia mesti merasa lebih menguntungkan
untuk bermain sesuai aturan, aturan yang menguntungkannya dengan lebih banyak koin baru
dibanding gabungan semua orang, daripada merusak sistem dan validitas kekayaannya sendiri.

7. Mendapatkan Kembali Ruang Disk

Setelah transaksi terbaru dalam sebuah koin terkubur di bawah blok yang cukup,
transaksi yang telah digunakan sebelumnya dapat dibuang untuk menghemat ruang
disk. Untuk memfasilitasi hal ini tanpa merusak hash blok, transaksi di-hash dalam
Merkle Tree [7][2][5], dengan hanya root yang disertakan dalam hash blok. Blok lama
kemudian dapat dipadatkan dengan memotong cabang-cabang pohon. Hash internal
tidak perlu disimpan.

Block Block
Block Header (Block Hash) Block Header (Block Hash)
‘ Prev Hash ‘ ‘ Nonce ‘ ‘ Prev Hash ‘ ‘ Nonce ‘
4 o
Hash01 Hash23 ‘ Hash01 ‘ ‘ Hash23 ‘
‘Hasho‘ ‘Hashl‘ ‘Hashz‘ ‘Hash3‘ 5
(o] [ma] [me] [1a]

Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

Header blok tanpa transaksi akan berukuran sekitar 80 byte. Jika kita asumsikan blok
dihasilkan setiap 10 menit, 80 byte x 6 x 24 x 365 = 4,2 MB per tahun. Dengan sistem komputer
yang biasanya dijual dengan RAM 2 GB pada tahun 2008, dan Hukum Moore yang memprediksi
pertumbuhan saat ini sebesar 1,2 GB per tahun, penyimpanan seharusnya tidak menjadi masalah
meskipun header blok harus disimpan di memori.

8. Simplified Payment Verification

Verifikasi pembayaran dapat dilakukan tanpa menjalankan seluruh node jaringan. Pengguna hanya
perlu menyimpan salinan header blok dari rantai bukti kerja terpanjang, yang dapat diperoleh
dengan melakukan kueri pada node jaringan hingga yakin memiliki rantai terpanjang, dan
mendapatkan cabang Merkle yang menghubungkan transaksi ke blok tempat transaksi tersebut
diberi stempel waktu. Pengguna tidak dapat memeriksa transaksi itu sendiri, tetapi dengan
menghubungkannya ke suatu tempat dalam rantai, ia dapat melihat bahwa node jaringan telah
menerimanya, dan blok yang ditambahkan setelahnya akan semakin mengonfirmasi bahwa
jaringan telah menerimanya.

Longest Proof-of-Work Chain

Block Header Block Header Block Header

fﬂ Prev Hash H Nonce ‘ F} Prev Hash ‘ ‘ Nonce ‘ F} Prev Hash H Nonce ‘ —»

Merkle Root Merkle Root Merkle Root

Hash23

Hash01

Merkle Branch for Tx3

Dengan demikian, verifikasi tersebut andal selama node yang jujur mengendalikan jaringan,
tetapi lebih rentan jika jaringan dikuasai oleh penyerang. Meskipun node jaringan dapat
memverifikasi transaksi sendiri, metode yang disederhanakan ini dapat dikelabui oleh transaksi
rekayasa penyerang selama penyerang dapat terus menguasai jaringan. Salah satu strategi untuk
melindungi diri dari hal ini adalah dengan menerima peringatan dari node jaringan ketika mereka
mendeteksi blok yang tidak valid, yang akan mendorong perangkat lunak pengguna untuk
mengunduh seluruh blok dan transaksi yang diperingatkan untuk mengonfirmasi
ketidakkonsistenan tersebut. Bisnis yang sering menerima pembayaran kemungkinan besar tetap
ingin menjalankan node mereka sendiri untuk keamanan yang lebih independen dan verifikasi
yang lebih cepat.

9. Menggabungkan dan Membagi Nilai

Meskipun koin dapat ditangani secara individual, akan sulit untuk melakukan transaksi terpisah
untuk setiap sen dalam transfer. Agar nilai dapat dibagi dan digabungkan, transaksi mengandung
beberapa masukan dan keluaran. Biasanya akan ada satu masukan dari transaksi sebelumnya yang
lebih besar atau beberapa masukan yang menggabungkan jumlah yang lebih kecil, dan maksimal
dua keluaran: satu untuk pembayaran, dan satu lagi untuk mengembalikan kembalian, jika ada,
kepada pengirim.

Transaction
—] [ouf—>
—] [
—.]

~

Perlu dicatat bahwa fan-out, di mana suatu transaksi bergantung pada beberapa transaksi, dan
transaksi-transaksi tersebut bergantung pada lebih banyak transaksi lainnya, bukanlah masalah di
sini. Tidak perlu mengekstrak salinan lengkap riwayat transaksi secara mandiri.

10. Privasi

Model perbankan tradisional mencapai tingkat privasi dengan membatasi akses informasi hanya
kepada pihak-pihak yang terlibat dan pihak ketiga yang tepercaya. Keharusan untuk
mengumumkan semua transaksi secara publik menghalangi metode ini, tetapi privasi tetap dapat
dipertahankan dengan memutus aliran informasi di tempat lain: dengan menjaga kerahasiaan kunci
publik. Publik dapat melihat bahwa seseorang mengirimkan sejumlah uang kepada orang lain,
tetapi tanpa informasi yang menghubungkan transaksi tersebut dengan siapa pun. Hal ini serupa
dengan tingkat informasi yang dirilis oleh bursa saham, di mana waktu dan ukuran transaksi
individual, "rekaman”, dipublikasikan, tetapi tanpa mengungkapkan siapa pihak-pihak tersebut.

Traditional Privacy Model

- . Trusted » i
‘ Identities H Transactions }—V Third Party »| Counterparty Public

New Privacy Model

Transactions }—V Public

Sebagai firewall tambahan, pasangan kunci baru harus digunakan untuk setiap transaksi agar
tidak terhubung ke pemilik yang sama. Beberapa penautan masih tidak dapat dihindari pada
transaksi multi-input, yang tentu saja akan mengungkapkan bahwa input-input tersebut dimiliki
oleh pemilik yang sama. Risikonya adalah jika pemilik kunci terungkap, penautan tersebut dapat
mengungkapkan transaksi lain yang dimiliki oleh pemilik yang sama.

‘ Identities ‘

11. Perhitungan

Kami mempertimbangkan skenario penyerang yang mencoba menghasilkan rantai alternatif lebih
cepat daripada rantai jujur. Sekalipun hal ini tercapai, sistem tidak akan terbuka terhadap
perubahan sewenang-wenang, seperti menciptakan nilai secara tiba-tiba atau mengambil uang
yang bukan milik penyerang. Node tidak akan menerima transaksi yang tidak valid sebagai
pembayaran, dan node jujur tidak akan pernah menerima blok yang berisi transaksi tersebut.
Penyerang hanya dapat mencoba mengubah salah satu transaksinya sendiri untuk mengambil
kembali uang yang baru saja dibelanjakannya.

Perlombaan antara rantai jujur dan rantai penyerang dapat dikarakterisasikan sebagai Binomial
Random Walk. Peristiwa suksesnya adalah rantai jujur yang diperpanjang satu blok, meningkatkan
keunggulannya sebesar +1, dan peristiwa gagalnya adalah rantai penyerang yang diperpanjang
satu blok, mengurangi selisihnya sebesar -1.

Probabilitas penyerang mengejar ketertinggalan dari defisit yang diberikan analog dengan masalah
Kehancuran Penjudi. Misalkan seorang penjudi dengan kredit tak terbatas memulai dengan defisit
dan memainkan percobaan yang berpotensi tak terbatas jumlahnya untuk mencoba mencapai titik
impas. Kita dapat menghitung kemungkinan dia mencapai titik impas, atau bahwa penyerang
dapat mengejar rantai yang jujur, sebagai berikut [8]:

p = kemungkinan node jujur menemukan blok berikutnya

g = kemungkinan penyerang menemukan blok berikutnya
g. = kemungkinan penyerang akan mengejar dari z blok di belakang

q:{ 1 if psq}
“ Na/py ifpig

Dengan asumsi kita bahwa p > g, probabilitasnya turun secara eksponensial seiring bertambahnya
jumlah blok yang harus dikejar penyerang. Dengan peluang yang tidak menguntungkannya, jika ia
tidak melakukan serangan mendadak yang beruntung sejak awal, peluangnya menjadi sangat kecil
karena ia semakin tertinggal.

Sekarang kita pertimbangkan berapa lama penerima transaksi baru perlu menunggu sebelum
cukup yakin bahwa pengirim tidak dapat mengubah transaksi. Kita asumsikan pengirim adalah
penyerang yang ingin membuat penerima percaya bahwa ia telah membayarnya untuk sementara
waktu, lalu mengalihkannya untuk membayar kembali kepada dirinya sendiri setelah beberapa
waktu berlalu. Penerima akan diberitahu ketika hal itu terjadi, tetapi pengirim berharap sudah
terlambat.

Penerima menghasilkan pasangan kunci baru dan memberikan kunci publik kepada pengirim
sesaat sebelum penandatanganan. Hal ini mencegah pengirim mempersiapkan rantai blok
sebelumnya dengan mengerjakannya terus menerus hingga ia cukup beruntung untuk maju cukup
jauh, lalu mengeksekusi transaksi pada saat itu juga. Setelah transaksi dikirim, pengirim yang
tidak jujur mulai bekerja secara rahasia pada rantai paralel yang berisi versi alternatif dari
transaksinya. Penerima menunggu hingga transaksi ditambahkan ke sebuah blok dan z blok telah
ditautkan setelahnya. la tidak tahu persis berapa banyak kemajuan yang telah dicapai penyerang,
tetapi dengan asumsi blok yang jujur membutuhkan waktu rata-rata yang diharapkan per blok,
potensi kemajuan penyerang akan berdistribusi Poisson dengan nilai yang diharapkan:

A=z 4q
p

Untuk mendapatkan probabilitas penyerang masih bisa mengejar sekarang, kita kalikan kerapatan
Poisson untuk setiap jumlah kemajuan yang bisa dicapainya dengan probabilitas ia bisa mengejar
dari titik tersebut:

S Ae2 f(q/p)-H ifk=sz
Z { |sz}

Penataan ulang untuk menghindari penjumlahan ekor distribusi yang tak terhingga...

S

Mengonversi ke kode C...

(z=k)

)

#include <math.h>
double AttackerSuccessProbability(double g, int z)
{
double p = 1.0 - qg;
double lambda = z * (q / p);
double sum = 1.0;
int 1, k;
for (k = 0; k <= z; k++)
{
double poisson = exp (-lambda) ;
for (1 = 1; i <= k; i++)
poisson *= lambda / 1i;
sum -= poisson * (1 - pow(qg / p, z - k));
}

return sum;

10

Dengan menjalankan beberapa hasil, kita dapat melihat probabilitas menurun secara eksponensial dengan z..

=

.0000000
.2045873
.0509779
.0131722
.0034552
.0009137
.0002428
.0000647
.0000173
.0000046
.0000012

N N NNDNNNNNNN,Q
L || || || | R

H O owo-Joy b WN P Oo

o
'y ty ty t” U U tU Ot O g

O OO OO OO OoOOo ok

w

.0000000
.1773523
.0416605
.0101008
.0024804
.0006132
.0001522
.0000379
.0000095
.0000024
.0000006

N N N N.,Q
o

== 0O o

o

z=20
z=25
z=30
z=35
z=40
z=45
z=50

FTTTTRRTITTRT

O OO OO OO oo

Memecahkan P kurang dari 0,1%...

P < 0.001
g=0.10 z=5
g=0.15 z=8
g=0.20 z=11
g=0.25 z=15
g=0.30 z=24
g=0.35 z=41
g=0.40 z=89
g=0.45 z=340

12. Kesimpulan

Kami telah mengusulkan sebuah sistem untuk transaksi elektronik tanpa bergantung pada
kepercayaan. Kami memulai dengan kerangka kerja koin yang umum, yang terbuat dari tanda
tangan digital, yang memberikan kontrol kepemilikan yang kuat, tetapi tidak lengkap tanpa cara
untuk mencegah pengeluaran ganda. Untuk mengatasi hal ini, kami mengusulkan jaringan peer-to-
peer menggunakan proof-of-work untuk merekam riwayat transaksi publik yang dengan cepat
menjadi tidak praktis secara komputasi bagi penyerang untuk diubah jika node yang jujur
mengendalikan sebagian besar daya CPU. Jaringan ini tangguh dalam kesederhanaannya yang
tidak terstruktur. Node bekerja sekaligus dengan sedikit koordinasi. Mereka tidak perlu
diidentifikasi, karena pesan tidak diarahkan ke tempat tertentu dan hanya perlu dikirimkan
berdasarkan upaya terbaik. Node dapat meninggalkan dan bergabung kembali dengan jaringan
sesuka hati, menerima rantai proof-of-work sebagai bukti atas apa yang terjadi selama mereka
pergi. Mereka memberikan suara dengan kekuatan CPU mereka, menyatakan penerimaan mereka
terhadap blok yang valid dengan berupaya memperluasnya dan menolak blok yang tidak valid
dengan menolak untuk mengerjakannya. Aturan dan insentif apa pun yang diperlukan dapat
ditegakkan dengan mekanisme konsensus ini.

1

Referensi

(1]
[2]

(3]

(4]

B3]

(6]

[7]

(8]

W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998.

H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping service with minimal
trust requirements,” In 20th Symposium on Information Theory in the Benelux, May 1999.

S. Haber, W.S. Stornetta, "How to time-stamp a digital document,” In Journal of Cryptology, vol 3, no
2, pages 99-111, 1991.

D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital time-stamping,”
In Sequences I1: Methods in Communication, Security and Computer Science, pages 329-334, 1993.

S. Haber, W.S. Stornetta, "Secure names for bit-strings,” In Proceedings of the 4th ACM Conference
on Computer and Communications Security, pages 28-35, April 1997.

A. Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

R.C. Merkle, "Protocols for public key cryptosystems,” In Proc. 1980 Symposium on Security and
Privacy, IEEE Computer Society, pages 122-133, April 1980.

W. Feller, "An introduction to probability theory and its applications,” 1957.

12

http://www.weidai.com/bmoney.txt
http://www.hashcash.org/papers/hashcash.pdf

	1. Perkenalan
	2. Transaksi
	3. Server Stempel Waktu
	4. Bukti Kerja
	5. Jaringan
	6. Insentif
	7. Mendapatkan Kembali Ruang Disk
	8. Simplified Payment Verification
	9. Menggabungkan dan Membagi Nilai
	10. Privasi
	11. Perhitungan
	12. Kesimpulan
	Referensi

